Dreaming of the Future

Digital technology could help make this a better world. But we’ve also got to change our way of thinking.

Despite the rapid progression of computing technology, the world faces incredible hazards as we enter a common economic-political vehicle, traveling at an ever-accelerating pace through increasingly complex terrain. Our headlights are much too dim and blurry, and we have totally inadequate steering and braking controls.

Many years ago, I dreamed that digital technology could greatly augment our collective human capabilities for dealing with complex, urgent problems. Computers, high-speed communications, displays, interfaces—it’s as if suddenly, in an evolutionary sense, we’re getting a super new nervous system to upgrade our collective social organisms. I dreamed that people were talking seriously about the potential of harnessing that technological and social nervous system to improve the collective IQ of our various organizations.

Then I dreamed that we got strategic and began to form cooperative alliances of organizations, employing advanced networked computer tools and methods to develop and apply new collective knowledge. Call these alliances NICs (Networked Improvement Communities). This seemed eminently sensible. The new technologies could enable much more effective distributed collaboration, and the potential for shared risk and multiplied benefits seemed promising.

In the dream, the solution involves giving high priority to the collective capability for a distributed community (or organization) to develop, integrate, and apply new knowledge. We already had this capability, of course; organizations handle new collective problems all the time. But yes, it would be nice if we could be a lot more effective at it. In the dream, this collaborative capability was called CoDIAK, for Concurrent Development, Integration, and Application of Knowledge.

Sounds great. The better we get, the better we get at getting better. Call it bootstrapping. And just think of the important role for technologists.

Although exciting new technology innovations have indeed been introduced within the NICs, the technology efforts have been overshadowed by the concurrent efforts in “human-system” innovation. This includes new skills, methods, collaborative organizational structures, telecommuting, knowledge-worker teams, distributed goal setting, planning and management processes.

One of the ideas computer-oriented folks have contributed is the open hyperdocument system. For this to make a difference, we must shed our outdated concept of a document. We need to think in terms of flexible jump- and viewing options. The objects assembled into a document should be dealt with explicitly as representations of kernel concepts in the authors’ minds, and explicit structuring options have to be utilized to provide a much enhanced mapping of the source concept structures.

The Web/HTML (Hyperext Markup Language) publishing-browsing landslide has moved steadily toward a highly structured, object-oriented architecture with integrated editor-browser tool sets. But his needs to become the way the majority of people do all their work. Draft notes, E-mails, plans, source code, to-do lists, what have you—all can be hyperdocument pieces, instantly and intrinsically linkable, and with work processes involving fewer and fewer hard-copy printouts.

It has been exciting to watch the emergence of total quality management, process reengineering, NII (National Information Infrastructure), the World Wide Web, and so forth. But it pains me that we haven’t yet put up an explicit CoDIAK target, nor explored how NICs could fly. Since the first of these dreams got fixed in my head, decades ago, I’ve struggled with the realization that the sooner the world gets serious about pursuing the possibilities, the greater the chance that we can reduce the hazards facing this careening vessel carrying us along.

If the dream of improving human destiny doesn’t move people, how about the thought that the companies that adopt the best CoDIAK-improvement strategy will have a significant competitive advantage. Wouldn’t you want your group to have the highest collective IQ?

I confess that I am a dreamer. Someone once called me “just a dreamer.” That offended me, the “just” part; being a real dreamer is hard work. It really gets hard when you start believing in your dreams.

As a researcher and inventor in the late 1950s and early 1960s, Douglas Engelbart envisioned most of the computing concepts we now take for granted (see the brief biography on page 137). He heads the Bootstrap Institute. You can reach him by sending E-mail to engelbart@bootstrap.org.
of our top 20, is the latest wunderkind to compile. What Steve Jobs was to the desktop, Andreessen is to the Internet. His Netscape Navigator (née Mosaic) for PCs, Macs, and Unix machines already accounts for more than half of all Web browsing. He led the development of the prototype while he was an undergraduate at the University of Illinois. Unlike some of the other wunderkind (whose names we won't mention), Andreessen graduated from college.

■ Bill Atkinson
If you knew the Lisa like Bill Atkinson knew the Lisa, then you knew a lot more about the Lisa than most of us wanted to know. But from this scarlet woman, named for Steve Wozniak's daughter, came a GUI. Atkinson was the chief wizard behind its graphics engine. The Lisa began at the Mac, and the rest is history. Today, as cofounder of Apple spin-off General Magic, Atkinson wants to create technology that he hopes will be welcomed into people's lives, rather than be a source of stress—technology like Magic Cap. We also fondly recall that he was the chief designer of HyperCard, the software construction kit that put Mac programming tools into the hands of millions of Mac users.

■ Tim Berners-Lee
If the snobs who whine about the Internet's exploding popularity ever form a vigilante posse, the first man they'll hang is Tim Berners-Lee. He's the guy behind the World Wide Web, which he developed for the CERN (European Council for Nuclear Research) in Geneva, Switzerland, so that physicists could swap data easily. Berners-Lee developed the URL, HTML, and HTTP standards, from which he wove the Web. Since launching the Web in 1991, he has often endorsed the idea of people using it for profitable transactions. He's now at MIT, where he directs the World Wide Web Consortium, which deals with Web security and other issues. He deserves a Nobel prize of some sort.

■ Doug Engelbart
Got patent envy? You'll have a hard time matching this pioneer, who holds 20, most of which are on basic features in microcomputing. Imagine microcomputing without windows; or word processing; or hypermedia, E-mail, and groupware; or the Internet. Imagine microcomputing without Doug Engelbart, now 70, who for years was a fixture at Stanford Research Institute. Engelbart had a vision that computers could be more than giant adding machines; they could be tools for human beings. A few years ago, he founded the Bootstrap Institute, dedicated to getting companies to collaborate on innovation. Comparisons with Thomas Edison do not seem...
farfetched, which reminds us: He’s best known for the first mouse—a wooden rodent invented in 1963.

Grace Murray Hopper

As a child, Grace Murray Hopper liked to take apart alarm clocks. She was the first woman to earn a doctorate in math at Yale. In World War II, she joined the Navy and was assigned to its computational center at Harvard. Amazing Grace later developed the first compiler for Remington Rand’s UNIVAC in the early 1950s and led the charge to create COBOL. The Navy recalled her in 1967, and she was on active duty until 1986. She died in 1992 at the age of 85 with the rank of rear admiral. Anyone who met her could not help but be awestruck by this diminutive fire storm of a human being. One pictures her stuck in purgatory, refusing to enter Heaven until St. Peter agrees to computerize. With a Lucky Strike hanging from her lip, she fires at the grand saint: "Beg your pardon, Sir, but your excuse, ‘We’ve always done it this way,’ is the most damaging phrase in the language."

Philippine Kahn

French swagger, German determination, jazz artistry—must be Philippine Kahn. This software swashbuckler writes great compilers, plays David against Microsoft’s Goliath, and never bores us. The son of a German father and a French mother, Kahn grew up in Paris. He studied Pascal with Niklaus Wirth, took a degree in math, earned money playing jazz, and developed applications on an Apple II. But Pascal compilers were too slow, so he wrote Turbo Pascal. Then he marketed it. With only $2000 in his pocket, he landed in the U.S. with no green card and no job. He founded Borland International in an office over an automobile repair shop in 1983. Despite the humble abode, Kahn convinced a BYTE ad salesperson to accept on credit a full-page color ad for Turbo Pascal. At a ridiculous $49.95, Kahn was swamped with orders.

Mitch Kapor

“Software has been very, very good to me,” Mitch Kapor once said. And, we add, Mitch Kapor has been very, very good to software. In 1982, he founded Lotus Development and, with Jonathan Sachs, created Lotus 1-2-3. Dan Bricklin invented the electronic spreadsheet (VisiCalc), but Kapor turned it into a more powerful, yet friendly, business tool. Lotus 1-2-3 remains the world’s most widely used application. Given IBM’s takeover of Lotus, it’s interesting to note that Kapor once tried and failed to interest Big Blue in an exclusive marketing deal for 1-2-3. He left Lotus in 1986. In 1990, he cofounded the Electronic Frontier Foundation, a nonprofit group dedicated to understanding the social impact of the digital revolution.
Evolving standards will make DSP application development easier, while general-purpose OSes, including Windows 95, are expected to include DSP programming interfaces, which could push DSPs further into traditional markets. In the future, digital hard drives will likely rely on DSP-powered drive controllers to process signals from the disk.

- **Floppy Disks**
 Like the proverbial 2-cent bolt that can ground a 767, how could we have worked without the lowly floppy disk? It has given us an inexpensive way to distribute applications and data. Floppies also gave unconnected workgroups “sneakernets,” inelegant but essential hacks in the pre-networked world. The Internet, WANs, and CD-ROMs may be cutting into the floppy’s territory. And the world probably already has enough floppies in circulation—we just need to reformat all the disks stashed in desk drawers and file cabinets. But before you think floppies are obsolete, break the shrinkwrap on Microsoft’s Office Professional 4.3: The collection of programs is still available on 31 disks.

- **Software Components**
 How do you implement custom applications quickly and not bust your operations budget? Plug in a component—those reusable, binary software objects that extend OSes by addressing specific needs. For Windows and the Mac, there are already OCXes (OLE controls); and components are also reshaping the various implementations of Unix and OS/2.

- **The Mouse**
 Like God and Man touching fingertips in Michelangelo’s Creation, no other peripheral has done more to symbolically link computers with our humanness. Forget touch-typing or even hunt and peck; the mouse provided a way for computers to become accessible for millions of people. The original design dates back to the Stanford Research Institute and Douglas Engelbart’s 1963 wooden prototype. In 1982, Mouse Systems introduced the first commercial mouse (a three-button design) for the IBM PC. The Apple mouse, originally for the Lisa, and Microsoft’s mouse, with two buttons, came a year later. Today, the basic structure of interacting with our computers, whether Macintosh, Windows, or Unix, hinges on the mechanical or optical strains of this peripheral.

- **Hard Drives**
 The peripheral that taught us that too much is never enough. The fixed disk drive became a staple of microcomputers, thanks to its fast data access and transfer speeds. The technology never stood still. We’re now getting gigabytes of storage space in petite form factors. In recent years, hard drives have increased data densities at an annual rate of about 60 percent. Magneto-resistive heads are leading the next charge by providing greater areal density than thin film or ferrite-inductive heads. Lower seek times, caching optimizations, and higher spin rates push performance even more. In the future, the digital read channel may double the amount of information we can jam onto drive platters.

- **Laser Printers**
 These fast, trusty machines have done more to impede the paperless office than any other peripheral. Once laser beams began to transfer images into toner on a
Features

Asset on the Line .. 37
BY SALVATORE SALAMONE
You can cut support costs if you’ve got an inventory of hardware and software.

REMOTE ACCESS
You Can Take It with You 41
BY JEFFREY FRITZ
So you’re working in Hooterville and that file you need is on a server at the home office in Chicago. No problem. With digital services like ISDN, and even analog technology, you can connect to the corporate network.

State of the Art

COMPUTER TELEPHONY
Collision! .. 199
BY RUSSELL KAY
Tying together telephones and computers is a great concept. New technologies, products, and standards are finally taking computer telephony beyond the concept stage and into your office.

Standard Issue 201
BY JAMES BURTON
When there was just one phone company, standards and interoperability weren’t even questions. Now we’ve got multiple answers.
Strategic Industry Alliances—203
A Checklist for Making CTI Decisions—206

Building Telephony Applications 211
BY JAMES BURTON
As more organizations use computer telephony, those that don’t may be at a competitive disadvantage. Here’s a guide to development tools you’ll need to construct computer telephony systems.

Telephony’s Killer App 215
BY JOHN P. MELLO JR.
It’s going to take unique software to make telephony a gotta-have-it resource. Here are some of the contenders that might be natural-born killers, including PhoneNotes, FastCall, and VoiceView.
Wildfire: One Wild and Not-So-Crazy Helper—216

SPECIAL ISSUE
Message from the Editor 53
Top 20 Small Systems 54
Top 20 Software Products 64
Most Important Chips 74
Most Important Networking Products 79
The Best Things On-line 85
Most Important Companies 99
Top 20 Technologies 109
Notorious Bugs 125
The 20 Most Important People 133
20 Spectacular Failures 145
Noted and Notorious Hacker Feats 151

Web Search 223
BY JON UDELL
Why wait for the Web equivalent of the Dewey decimal system? You can index your Web collection now. Here are a couple of ways to do it. Plus tips on naming, hot links, and the answer to the question, “What About WAIS?”

News & Views

PROCESSORS
P6 Weakness Revealed 24
People who buy the first computers based on Intel’s P6 processor will be in for a surprise when they run 16-bit DOS and Windows applications. According to benchmarks, a Pentium runs 16-bit DOS/Windows programs faster than a P6 at the same clock speed, even though the next-generation P6 is supposed to be a “faster” CPU.

LITTLE THINKING MACHINES
PC Power Comes to the Calculator 25
Texas Instruments plans to release a new calculator that’s a whole lot smarter than its predecessors.

WINDOW’S DEVELOPMENT
Delphi and VB Turn 32 26
New versions of Borland’s Delphi and Microsoft’s Visual Basic have stronger client/server and OLE development capabilities for 32-bit programs.
will. This 32-bit OS bundle includes peer services, LAN requesters, a slick approach to over-the-wire installation, and a passel of handy programs.

COLOR PRINTERS
To Print a Rainbow 239
BY TOM THOMPSON
Second-generation color lasers from Apple and Tektronix set new standards for print quality, network connectivity, and ease of maintenance.

GRAPHICS ACCELERATORS
3-D Graphics Go Zoom 243
BY GREG LOVERIA
Intergraph and Omnico offer two different routes to the land of glorious photorealistic images—a workstation and a plug-in PC card.

Core Technologies

CPUS
Endian Issues 263
BY WILLIAM STALLINGS
Different processors have incompatible memory-storage arrangements, but the PowerPC can handle them all.

PROGRAMMING
The Joy of J 267
BY DICK FOUNTAIN
Successor to APL, the J language extends its ancestor’s expressiveness and power. And you don’t need a special keyboard.

OPERATING SYSTEMS
Springtime at Sun 271
BY DOUG TAMASANIS
Many of the concepts in Sun’s experimental Spring system will bloom in Solaris.

NETWORKS
Tuning In to ISDN 273
BY JEFFREY FRITZ
Satellite and radio technology are breaking the earthly limits of terrestrial ISDN.

Opinions

Pournelle: Of COM Ports & Digital Frogs ... 275
BY JERRY POURNELLE
Jerry explores painless dissection with Digital Frog, then settles down for more bloodless surgery as he tries to make communications software work under Windows 95.

Books & CD-ROMS:
How to Optimize Your PowerPC Code 33
BY TOM THOMPSON, ALAN JOCH, AND RICH FRIEDMAN
Writing faster native code; plus, commerce on the Internet, and poor and nostalgic CD-ROMs.

Commentary: Dreaming of the Future 330
BY DOUGLAS ENGBART
Can digital technology make a better world? Improve our collective IQ? In the dreams of this visionary inventor it can.

Editorial BY RAPHAEL NEEDLEMAN 10
Letters 18
Readers’ comments on the BYTE Network Project, Internet censorship, and the trouble with Microsoft.

DISK ARRAYS
Lab Report:
16 Fast, Reliable RAID Subsystems 248
We test a wide array of disk subsystems that minimize network downtime and maximize storage space, then pick the best RAIDs for database servers and audio/video applications.

How Error Correction Works — 250
File Servers with RAID — 252
How We Tested — 254
Software RAID Solutions — 256
Honorable Mentions — 259
Helpful Hints — 259

Reader Survey — 282

READER SERVICE
Editorial Index by Company — 328
Alphabetical Index to Advertisers — 324
Index to Advertisers by Product Category — 326
Inquiry Reply Cards — 1324, 325A

BUYER’S GUIDE — 291
Mail Order
Hardware/Software Showcase
Buyer’s Mart

PROGRAM LISTINGS
FTP: ftp to ftp.byte.com
From BIX: Join “listings/frombyte95” and select the appropriate subarea (i.e., “sep95.”)
From the BYTE BBS at 1200-9600 bps: Dial (603) 924-9820 and follow the instructions at the prompt.

Bulk Rate
US Postage
PAID
McGraw-Hill

BYSTE (ISSN 0360-5280) is published monthly by McGraw-Hill, Inc., U.S. subscriber rate $29.95 per year. In Canada and Mexico, $34.95 per year. European surface mail subscriptions $60, airmail $85. Non-European subscriptions, $60 surface mail or $85 air-mail. All foreign subscriptions are payable in U.S. funds but can be drawn on a U.S. bank. Single copies for $5 in the U.S., $4.50 in Canada. Executives, Editorial, Circulation, and Advertising Offices: One Phoenix Mill Lane, Peterborough, NH 03458. Second-class postage paid at Winnipeg, Manitoba, Canada Post International Publications Mail Product Sales Agreement No. 246-492. Registered for GST as McGraw-Hill, Inc., GST #120-276873. Printed in the United States of America. Postmaster: Send address changes and fulfillment questions to BYTE Subscriptions, P.O. Box 552, Hightstown, NJ 08520.